
The need for speed

Marcus Börger
Derick Rethans

PHP Quebec

Marcus Börger The need for speed 2

The need for speed
General aspects

Communication
Hardware
Operating system

How to use PHP
As a web scripting language
As a template system
As a RAD tool
The Rasmus way

What to do and what not to do with PHP

Marcus Börger The need for speed 3

General aspects
Do not loose your focus

Think before you do anything
Always check you are still on track
Estimate the time and money you (still) have
Estimate the time and money you (still) need

Are you using the right tools?
Is PHP the correct choice?
After all is a web application the right thing?

Are you using the right algorithms?
Is there a better way?

Know your environment
Know your team

Marcus Börger The need for speed 4

Communication

internet

your server or serverfarm

Marcus Börger The need for speed 5

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwidth is
available

Marcus Börger The need for speed 6

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers means they communicate

Marcus Börger The need for speed 7

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers might help

They will communicate
You need more software
You have more points of failure

Marcus Börger The need for speed 8

Communication
The sum is smaller than the whole

No need to apply more servers if no more bandwith is
available

A prepared DDoS can put down anything
Applying more servers might help

They will communicate
You need more software
You have more points of failure

New ideas can help

Marcus Börger The need for speed 9

Hardware
Every single hardware piece is a point of failure

Avoid single point of failures
Use the hardware as specified (speed, temperature)
Don’t use it to emulate other hardware
Don't use it to imitate other hardware

If you don't have enough knowledge give it away

Marcus Börger The need for speed 10

Operating system
Choose the OS based on

your hardware
your software
what you are going to do

Marcus Börger The need for speed 11

Architecture
Apply specialization

Internet

ISDN

WebServer

dHTML

DB-Server

Data Templates

AppServer

VPN

Firewall

Proxy

Marcus Börger The need for speed 12

Database Server
What kind of data
What size does your data have
Who is responsible for data integrity
Who is responsible for security
Does the database need its own logic

Marcus Börger The need for speed 13

Application Server
You want dependency injection?
You need inversion of control?

PHP would need state first

WebServer

dHTML

DB-Server

Data Templates

AppServer

Marcus Börger The need for speed 14

Web server
Apache

Suitable for nearly all needs

Microsoft IIS
Perfect when the rest is also Microsoft
Threadsafty issues
Not the major/focused development platform

Zeus
Very fast

Marcus Börger The need for speed 15

Web server

TUX - kernel-based web server
Virtual Host support.

thttpd - tiny/turbo/throttling HTTP server
Non-blocking I/O is good.
Throttling capabilities.

lighttpd
On the fly compression.
Excellent virtual host support.

Marcus Börger The need for speed 16

Web server

Plenty of CPU power but limited bandwidth

Turn on output compression

Much bandwidth but limited CPU power

Do not use output compression

Marcus Börger The need for speed 17

Web Server
Use different web servers for different things

internet

static contents scripts multimedia content

Marcus Börger The need for speed 18

What is PHP
PHP is a scripting language specifically designed to help
developers solve web problems, it works by embedding
sections of code within HTML blocks.

PHP Advantages
Easy to learn
Targeted, built-in functions for web developers
Good introduction to programming
Configurable
Simple extension API
PEAR
Runs britneyspears.com

PHP Disadvantages
Focused on the Web environment
Poor OO support until PHP 5
Configurability Hurts Portability
Easy for beginning users,
Easy for beginning users to make mistakes

Marcus Börger The need for speed 19

PHP - As web scripting language

Every page is its own PHP script

Flexible and easy
Independent scripts by independent programmers

Hard to apply general tasks to all pages
Includes can help
CSS can help

Marcus Börger The need for speed 20

PHP - As a template system

PHP was developed as a template system

PHP can be used as template system

PHP can be the language to develop a template system

Marcus Börger The need for speed 21

PHP - As a RAD tool

No PHP in your real applications

Test with PHP

Implement in another language

Marcus Börger The need for speed 22

PHP - The Rasmus way
Small basic PHP scripts
Small include files to solve general aspects
Include files for the business logic
Specialized extensions for the actual work

Marcus Börger The need for speed 23

Break

Marcus Börger The need for speed 24

References
Copying a variable takes time

Learn when PHP needs to copy
Learn about references

Marcus Börger The need for speed 25

References

A famous PHP 4 rule:

If your code doesn't work spread some '&'s into it

If it still doesn't work use more '&'

Understand references

Marcus Börger The need for speed 26

References
References are aliases

If you change one you change all others

<?php // empty global table

$a = 25; // creates a zval

$b = $a; // creates a pointer to $a

$b = 42; // makes $b a copy of $a and changes it

$c = $a; // create another pointer to $a

$d = &$a; // split/copy $a, creates $d as a reference to $a

$c = 43; // change $c only

$d = 0; // changes $d and hence $a

?>

Marcus Börger The need for speed 27

References
Variables are normally copied on function calls

<?php

function test($a)
{
}

$a = array(25); // creates a global zval

test($a); // creates a new symbol table, copies $a

?>

Marcus Börger The need for speed 28

References
Variables can be passed as references

<?php

function test(&$b)
{

$b[] = 42; // adds a new value to local $b = global $a
}

$a = array(25); // creates a global zval

test($a); // creates a new symbol table

?>

Marcus Börger The need for speed 29

References
Variables are normally copied on return

<?php

function test(&$b)
{

return $b;
}

$a = array(25);

$b = test($a); // $b is a new value, copied on return

?>

Marcus Börger The need for speed 30

References
Functions can return aliases

<?php

function &test(&$b)
{

return $b;
}

$a = array(25);

$b = test($a); // $b is a new value, copied after return

?>

Marcus Börger The need for speed 31

References
Functions can return aliases
Explicit use of the returned reference is needed

<?php

function &test(&$b)
{

return $b;
}

$a = array(25);

$b = &test($a); // $b is a reference to $a

?>

Marcus Börger The need for speed 32

References
Objects should always be references

In PHP 5 they are object-references

<?php
class test
{

function factory() {
return new test();

}
}

$obj = test::factory();
?>

Marcus Börger The need for speed 33

References
Objects should always be references

In PHP 5 they are object-references
In PHP 3 and 4 you have to take care yourself

<?php
class test
{

function &factory() {
$a = &new test();
return $a;

}
}

$obj = &test::factory();
?>

Marcus Börger The need for speed 34

References
Most internal functions don't use references

This is to allows you to pass arrays and strings without
copying them into a variable first

<?php
$a = array_fill(0, $cnt, 'foo');
array_key_exists($i, $a); // is_ref == 0, refcount == 1
$b = $a;
array_key_exists($i, $a); // is_ref == 0, refcount == 2
array_key_exists($i, &$a); // is_ref == 0, refcount == 2
unset($b);
$b =& $a; // making a reference, but not using it
array_key_exists($i, $b); // is_ref == 1, refcount > 1 (pass as var)
array_key_exists($i, &$a); // is_ref == 1, refcount > 1 (pass as ref)
unset($b);
array_key_exists($i, $a); // is_ref == ?, refcount == 1
?>

Marcus Börger The need for speed 35

Use the right tool
For the right problem

Use OOP where appropriate not where nice

Use layers not because it is easy or looks nice

Use abstraction if derived or used often

Use indirection if it is of any advantage

Marcus Börger The need for speed 36

The 80 / 20 rule

80% of your code takes less than 20% runtime

You don't need to optimize anything in the 80%

Find out which are the 20% to optimize

Marcus Börger The need for speed 37

Stop Optimizing
Don’t get overexcited about optimization

Sometimes it is cheaper and more efficient
to buy another server
to increase bandwidth
To buy faster software

Marcus Börger The need for speed 38

THANK YOU

http://somabo.de/talks/

http://derickrethans.nl/talks.php

