OSCON

OPEN SOQOURCE
CONVENTION

Introduction to
Object-oriented
programming with PHP

Marcus Borger

kp@ OSCON 2006

Overview

CONVENTION

What is OOP?

PHP and OOP

Exceptions

Iterators

Reflection

Patterns

Marcus Borger Introduction to Object-oriented programming with PHP

OPEN SOURCE

CONVENTION

What i1s OOP

class Useless extends Nonsense
{

abstract fugction blaBla();
ks

Marcus Borger Introduction to Object-oriented programming with PHP

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

NRNNNRXNRKN

&

What does OOP aim to
achieve?

Allow compartmentalized refactoring of code.
Promote code re-use.

Promote extensibility, flexibility and adaptability.
Better for team development.

Many patterns are designed for OOP.

Some patterns lead to much more efficient code

Do you need to use OOP to achieve these goals?
M Of course not.
M It's designed to make those things easier though.

Marcus Borger Introduction to Object-oriented programming with PHP

What are the features of
CONVENTION O O P 7

Encapsulation
Inheritance

Polymorphism

Marcus Borger Introduction to Object-oriented programming with PHP

Encapsulation

CONVENTION

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
Into a coherent data structure (classes).

Marcus Borger Introduction to Object-oriented programming with PHP 6

Encapsulation

CONVENTION

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
INto a coherent data structure (classes).

Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.

Marcus Borger Introduction to Object-oriented programming with PHP 7

Encapsulation

CONVEMNTICON

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
INto a coherent data structure (classes).

Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.

The basic idea is to re-code real life.

For instance if you press a key on your laptop keyboard
you do not know what is happening in detail. For you it is
the same as if you press the keyboard of an ATM. We say
the interface is the same. If another person has the same
laptop the internal details would be exactly the same.

Marcus Borger Introduction to Object-oriented programming with PHP 8

OFEN SQURCE
CONVEMNTICON

Encapsulation

Encapsulation is about grouping of functionality
(operations) and related data (attributes) together
INto a coherent data structure (classes).

Classes represent complex data types and the
operations that act on them. An object is a
particular instance of a class.

The basic idea is to re-code real life.

For instance if you publish a text that is not really different
from publishing a picture. Both are content types and you
might want to encapsulate the details on how to do the
actual publishing in a class. And once you have that you
can easily have contend that consists of both pictures and
text and yet use the same operations for publishing.

Marcus Borger Introduction to Object-oriented programming with PHP o)

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

Encapsulation: Are ODbjects
Just Dictionaries?

In PHP 4 objects were little more than arrays.

In PHP 5 you get much more control by visibility,
Interfaces, type hints, interceptors and more.

Another difference is coherency. Classes can be
told to automatically execute specific code on
object creation and destruction.

class Simple {

function _ construct() { /7*...*/ }
function _ destruct() { /7*...*/ }

¥

Marcus Borger Introduction to Object-oriented programming with PHP 10

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

Data Hiding

Another difference between objects and arrays is
that objects permit strict visibility semantics. Data
hiding eases refactoring by controlling what other
parties can access in your code.

M public anyone can access it

M protected only descendants can access it

M private only you can access it

M final no one can re-declare it

M abstract someone else will implement this

Why have these in PHP?

Because sometimes self-discipline isn’t enough.

Marcus Borger Introduction to Object-oriented programming with PHP 11

OFEN SQURCE
CONVEMNTICON

Inheritance

Inheritance allows a class to specialize (or extend)
another class and inherit all its methods,
properties and behaviors.

This promotes
M Extensibility
M Reusability
M Code Consolidation
M Abstraction
M Responsibility

Marcus Borger Introduction to Object-oriented programming with PHP 12

OFEN SQURCE
CONVEMNTICON

The Problem of Code
Duplication

Code duplication contradicts maintainability.
You often end up with code that looks like this:

function foo_to xml($foo) {
// generic stuff
// fToo-specific stuff

}

function bar_to xml($bar) {
// generic stuff
// bar specific stuff

Marcus Borger Introduction to Object-oriented programming with PHP

13

The Problem of Code
Duplication

You could clean that up as follows
function base to xml($data) { /7*...*/ }
function foo_ to xml($foo) {

base to xml($foo0);
// Too specific stuff

ks

function bar_to xml($bar) {
base to xml($bar);
// bar specific stuff

OPEMN SQOURCE
CONVENTION

}

But it’s hard to keep base_to_xml() working for
the disparate foo and bar types.

Marcus Borger Introduction to Object-oriented programming with PHP

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

The Problem of Code
Duplication

In an OOP style you would create classes for the
Foo and Bar classes that extend from a base class

that handles common functionality.

Sharing a base class promotes sameness.

class Base {
public function toXML()

1
/*._.*/

¥
¥
class Foo extends Base { class Bar extends Base {
public function toXML() public function toXML()
1 1
parent: :toXML(); parent: :toXML();
// foo specific stuff // bar specific stuff

} }
¥

Marcus Borger Introduction to Object-oriented programming with PHP 15

Polymorphism?

CONVENTION

Suppose a calendar that is a collection of entries.
Procedurally dislpaying all the entries might look like:

foreach($entries as $entry) {

switch($entry[type’]) {

case "professional”:
display professional _entry($entry);
break;

case "personal”:
display personal entry($entry);
break;

Marcus Borger Introduction to Object-oriented programming with PHP 16

O'REILLY"

OSCON

OPEN SOURCE

CONVENTION

Simplicity through
Polymorphism
In the OOP paradigm this would look like:

foreach($entries as $entry) {
$entry->display();
}

The key point is we don't have to modify this loop
to add new types. When we add a new type, that

type gets a display() method so that it knows how
to display itself, and we’re done.

Also this Is much faster because we do not have to

PIP)) check the type for every element.

Marcus Borger Introduction to Object-oriented programming with PHP 17

O'REILLY"

OSCON

OPEN SQURCE

CONVENTION

Simplicity through Magic?

Actually in PHP you might want this:

foreach($entries as $entry) {
echo $entry;
}

A class can have a ___tostring() method which
defines how its objects are converted into a
textual representation.

PHP 5.2 supports this in all string contexts.

Marcus Borger Introduction to Object-oriented programming with PHP 18

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

Polymorphism
the other way round

Unlike other languages PHP does not and will not
offer polymorphism for method calling. Thus the

following will never be available in PHP

To work around this

M Use the other way round (call other methods from a
single toXML() function in a polymorphic way)

M Use switch/case (though this is not the OO way)

Marcus Borger Introduction to Object-oriented programming with PHP

19

Another example

class Humans {

public function __ construct($name) {
/*...*%/

¥
public function eat() { /7*...*/ }
public function sleep() { /7*...*/ }
public function snore() { /7*...*/ }
public function wakeup() { 7*...*/ }

Marcus Borger Introduction to Object-oriented programming with PHP

Some Inheritance

class Humans {
public function _ construct($name) { /*...*/}
public function eat() { /7*...*/ }
public function sleep() { 7*...*/ }
public function snore() { 7*...*/ }
public function wakeup() { 7*...*/ }
+
class Women extends Humans {
public function giveBirth() { /7*...*/ }

}

Marcus Borger Introduction to Object-oriented programming with PHP

= |Inheritance+Polymorphism

class Humans {
public function _ construct($name) { /*...*/}
public function eat() { /7*...*/ }
public function sleep() { /7*...*/ }
public function wakeup() { 7*...*/ }
+
class Women extends Humans {
public function giveBirth() { /7*...*/ }
+
class Men extends Humans {
public function snore() { /7*...*/ }

Marcus Borger Introduction to Object-oriented programming with PHP 22

A little abstraction

abstract class Humans {
public function _ construct($name) { /7*...*/}
abstract public function gender();
public function eat() { /7*...*/ }
public function sleep() { /7*...*/ }
public function wakeup() { 7*...*/ }

¥

class Women extends Humans {
public function gender() { return "female®"; }
public function giveBirth() { 7*...*/ }

¥

class Men extends Humans {
public function gender() { return "male”"; }
public function snore() { /7*...*/ }

Marcus Borger Introduction to Object-oriented programming with PHP

A little abstraction

abstract class Humans {
public function _ construct($name) { /7*...*/}
abstract public function gender();
public function eat() { /7*...*/ }
public function sleep() { /7*...*/ }
public function wakeup() { 7*...*/ }

¥

class Women extends Humans {
final public function gender() { return "f"; }
public function giveBirth() { 7*...*/ }

¥

class Men extends Humans {
final public function gender() { return "m"; }
public function snore() { /7*...*/ }

Marcus Borger Introduction to Object-oriented programming with PHP

QOFEMN SOURCE
CONVENTION

Marcus Borger

PHP and OOP

Introduction to Object-oriented programming with PHP

25

DFEM

COURCE

CONVEMNTICON

PHP 4 and OOP ?

Poor Object model

M Methods
[x] No visibility
No abstracts, No final
Static without declaration
M Properties
No default values
No static properties
No constants
M Inheritance
No abstract, final inheritance, no interfaces
No prototype checking, no types
M Object handling
Copied by value
No destructors

Marcus Borger Introduction to Object-oriented programming with PHP

26

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

NN NNNNNNNRNRN

ZE2's revamped object model

ODbjects are referenced by identifiers
Constructors and Destructors

Static members

Default property values

Constants
Visibility
Interfaces

Final and abstract members

Interceptors
Exceptions
Reflection API
Iterators

Marcus Borger

Introduction to Object-oriented programming with PHP

27

=¥ Revamped Object Model

CONVEMNTICON

PHP 5 has really good OOP support
M Better code reuse
M Better for team development
M Easier to refactor
M Some patterns lead to much more efficient code
M Fits better in marketing scenarios

Marcus Borger Introduction to Object-oriented programming with PHP

QOFEMN SOURCE
CONVENTION

PHP 5 OOP In detall

Marcus Borger Introduction to Object-oriented programming with PHP

29

O'REILLY"

OSCON Objects referenced by

OPEN SQURCE

CONVENTION identifiers

Objects are no longer somewhat special arrays
Objects are no longer copied by default
Objects may be copied using clone/__ clone()

NN KN

class Object {}; $obj || $ref $dup

new Object(); ! v

Instance 1 Instance 2

$obj

$ref = $obj;

$dup = clone $obj;

Class Object

Marcus Borger Introduction to Object-oriented programming with PHP 30

O'REILLY"

OSCON

OPEN SQURCE

CONVENTION

Constructors and Destructors

Constructors/Destructors control object lifetime

M Constructors may have both new OR old style name
M New style constructors are preferred
M Constructors must not use inherited protocol

M Destructors are called when deleting the last reference
M No particular or controllable order during shutdown
M Destructors cannot have parameters
M Since PHP 5.0.1 destructors can work with resources

class Object {
function _ construct() {} «—
function _ destruct() {} «—
by
$obj = new Object();e
unset($obj); e

Marcus Borger Introduction to Object-oriented programming with PHP

31

OFEN SQURCE
CONVEMNTICON

Constructors and Destructors

Parents must be called manually

class Base {
function _ construct() {} ¢t —
function _ destruct() {} «

¥

class Object extends Base {
function _ construct() {<+—

parent::_construct();e

¥

function _ destruct() {<«—
parent:: destruct();e
+

by
$obj = new Object() ;e
unset($obj);e

Marcus Borger Introduction to Object-oriented programming with PHP

32

=¥ Default property values

CONVENTION

Properties can have default values
M Bound to the class not to the object
M Default values cannot be changed but overwritten

class Object { $obj1 $obj2
var $prop = ""Hello\n";

} \ 4 \ 4
Instance 1 || Instance 2

$objl = new Object; $prop $prop

$objl->prop = ""Hello World\n";

$obj2 = new Object; Class Object

echo $obj2->prop; 7/ Hello $prop/default

Marcus Borger Introduction to Object-oriented programming with PHP

Static members

CONVENTION

Static methods and properties

M Can be initialized

class Object {
var $prop;
static $stat = "Hello\n'';
static function test() {
echo self::$stat;
by
}
Object: :test();
$obj1 new Object;
$obj2 new Object;

M Bound to the class not to the object
M Only exists once per class rather than per instance

$obj1 $0bj2

A\ 4 A\ 4

Instance 1 || Instance 2
$prop $prop

A 4

Class Object
$stat

Marcus Borger Introduction to Object-oriented programming with PHP

34

Pseudo constants

CONVEMNTICON

___CLASS shows the current class name

__ _METHOD___ shows class and method or function
self references the class itself
parent references the parent class

$this references the object itself

class Base {
static function Show() {
echo FILE _."(". LINE__."):". METHOD _.'"\n";
+
+

class Object extends Base {
static function Use() {
Self::Show();
Parent: :Show();
+
static function Show() {
echo FILE _°(". LINE__."):". METHOD _.""\n";

Marcus Borger Introduction to Object-oriented programming with PHP 35

CONVEMNTICON

Controlling member visibility / Information hiding
M A derived class doesn't know parents private members
M An inherited protected member can be made public

class Base {

public $a; Derived
protected $b;
private $c; Base
¥ $a |«
class Derived extends Base { $b <
public $a; $c
public $b;
private $c; $a [«
} $b [+
$c
Base::$c

Marcus Borger Introduction to Object-oriented programming with PHP

Constructor visibility

CONVENTION

A protected constructor prevents instantiation

class Base {
protected function __ construct() {

}
}

class Derived extends Base {
// constructor i1s still protected
static function getBase() {
return new Base; // Factory pattern
by

}

class Three extends Derived {
public function _ construct() {

Marcus Borger Introduction to Object-oriented programming with PHP 37

e The Singleton pattern

CONVENTION

Sometimes you want only a single instance of
aclass to ever exist.

M DB connections

M An object representing the user or connection.

class Singleton {
static private $instance;
protected function _ construct() {}
final private function _ clone() {}
static function getlnstance() {
iIT(Iself::$instance)
self::$instance = new Singleton();
return self::$instance;

+
¥ _
$a = Singleton::getilnstance();
$a->i1d = 1;

$b = Singleton::getlnstance();
print $b->i1d."\n"";

Marcus Borger Introduction to Object-oriented programming with PHP

OPEN SOURCE C O n S t a. n tS

CONVENTION

Constants are read only static properties
Constants are always public

class Base {
const greeting = ""Hello\n";

}

class Dervied extends Base {
const greeting = "Hello World\n';
static function func(Q {
echo parent::greeting;

}
}

echo Base::greeting;
echo Derived::greeting;
Derived: :func();

Marcus Borger Introduction to Object-oriented programming with PHP

OPEN SOURCE AbSt raCt m e m b e rS

CONVENTION

Methods can be abstract
M They don’t have a body
M A class with an abstract method must be abstract

Classes can be made abstract
M The class cannot be instantiated

Properties cannot be made abstract

abstract class Base {
abstract function no_body();

}

class Derived extends Base {
function no_body() { echo "Body\n'; }

Marcus Borger Introduction to Object-oriented programming with PHP

40

Final members

CONVENTION

Methods can be final
M They cannot be overwritten
M They are class invariants

Classes can be final
M They cannot be inherited

class Base {
final function invariant() { echo "Hello\n"; }
>

class Derived extends Base {

}

final class Leaf extends Derived {

Marcus Borger Introduction to Object-oriented programming with PHP

OFEN SQURCE

Different Object

CONVENTION S a m e b e h aVi O r

class Line {
function draw() {};

class Polygon {
protected $lines;
function draw() {
foreach($this->lines as $line)
$line->draw();

}

class Rectangle extends Polygon {
function draw() {};

class Ellipse {
function draw() {};

class Circle extends Ellipse {
function draw() {
parent::draw();

Often different objects have the same interface
without having the same base class

Line Ellipse
$Iin>ek T
Polygon Circle
Rectangle

Marcus Borger Introduction to Object-oriented programming with PHP

42

Interfaces

CONVENTION

interface Drawable {
function draw();

class Line implements Drawable {
function draw() {};

class Polygon implements Drawable {
protected $lines;
function draw() {
foreach($this->lines as $line)
$line->draw();

}

class Rectangle extends Polygon {
function draw() {};

class Ellipse implements Drawable {
function draw() {};

class Circle extends Ellipse {
function draw() {
parent::draw();

Marcus Borger

‘ Drawable \

7

N

N

N

N

Interfaces describe an abstract class protocol
Classes may inherit multiple Interfaces

N
N

Line i Ellipse
$Iin>ek ; T
Polygon Circle
Rectangle

Introduction to Object-oriented programming with PHP

43

Property Kinds

CONVENTION

Declared properties
M May have a default value
M Can have selected visibility

Implicit public properties
M Declared by simply using them in ANY method

Virtual properties
M Handled by interceptor methods

Static properties
M Bound to the class rather than to the instance

Marcus Borger Introduction to Object-oriented programming with PHP

= Object to String conversion

CONVEMNTICON

___toString(): semi-automatic object to string
conversion with echo and print
(automatic starting with 5.2)

class Object {
function _ toString() {
return "Object as string”;

}
}

$o0 = new Object;
echo $o;

$str = (string) $o; // does NOT call __ toString

Marcus Borger Introduction to Object-oriented programming with PHP 45

OPEN SOURCE I n t e r C e p t O r S

CONVEMNTICON

Allow to dynamically handle non class members
M Lazy initialization of properties
M Simulating Object aggregation and Multiple inheritance

class Object {
protected $virtual = array();
function _ get($name) {
return @$this->virtual[$name];
}

function __set($name, $value) {
$this->virtual[$name] = $value;
+

function __unset($name, $value) {
unset($this->virtual[$name]);
+

function ___isset($name, $value) {
return isset($this->virtual[$name]);

+
function __call($func, $params) {

echo "Could not call * . CLASS . "::° . $func . "\n";
+

Marcus Borger Introduction to Object-oriented programming with PHP 46

Typehinting

CONVENTION

PHP 5 allows to easily force a type of a parameter
M PHP does not allow NULL for typehints
M Typehints must be inherited as given in base class
M PHP 5.1 offers typehinting with arrays
M PHP 5.2 offers optional typhinted parameters (= NULL)

class Object {
public function comparother) {

// Some code here
s

public function compare2($other) {

iIT (is_null($other) || $other instanceof Object) {
// Some code here

Marcus Borger Introduction to Object-oriented programming with PHP 47

OPEN SOURCE C I aS S D e S i g n

CONVENTION

It Is Important to think about your class hierarchy

Avoid very deep or broad inheritance graphs

PHP only supports is-a and has-a relations

. -7 Tires
Bicycle -~
Vehicle —-—-----------------—- > Engine
Car Bus Truck Diesel ||Gasoline
Tank F--—-—-—- > Turbine Plane

Marcus Borger Introduction to Object-oriented programming with PHP 48

“y] To Strict or to Weak?

CONVEMNTICON

PHP tries to prevent you from doing some errors
M You are bound to keep inherited signatures
M You cannot change from ref to non-ref return

Yet PHP allows absolute flexibility
M Just do not define a signature
M Warning: This is extremley error prone

Marcus Borger Introduction to Object-oriented programming with PHP

49

QOFEMN SOURCE
CONVENTION

Dynamic class loading

Marcus Borger Introduction to Object-oriented programming with PHP

50

OPEN SOURCE Dyn am i C C I aSS I O a'd i n g

CONVEMNTICON

__autoload() is good when you're alone
M Requires a single file for each class

M Only load class files when necessary
M No need to parse/compile unneeded classes
M No need to check which class files to load

Additional user space code

2 Only one single loader model is possible

Marcus Borger Introduction to Object-oriented programming with PHP

51

s autoload & require_once

CONVEMNTICON

Store the class loader 1n an Include file

M In each script:
require_once("<path>/autoload.inc")

M Use INI option:
auto prepend_Ffile=<path>/autoload.inc

<?php
function __ autoload($class name)

1
require_once(
dirname(__FILE_) . °/" . $class_name . "_.p5c”);

?>

Marcus Borger Introduction to Object-oriented programming with PHP 52

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

| [] "~: ?>

SPL's class loading

Supports fast default implementation
M Look into path's specified by INI option include_path
M Look for specified file extensions (.inc, .php)

Ability to register multiple user defined loaders

Overwrites ZEND engine's _ autoload() cache
M You need to register __ autoload if using spl's autoload

<?php
spl _autoload register();
iIT (function_exists()) {
spl _autoload register();
+

Marcus Borger Introduction to Object-oriented programming with PHP 53

O'REILLY"

OSCON

OPEN SOURCE

CONVENTION

SPL's class loading

spl _autoload($class name, $extensions=NULL)
Load a class from in include path
Fast c code implementation

spl _autoload extensions($extensions=NULL)
Get or set filename extensions

spl _autoload register($loader_function)
Register a single loader function

spl _autoload unregister($loader_function)
Unregister a single loader function

spl _autoload functions()
List all registered loader functions

spl_autoload call($class name)
Load a class through registered class loaders
Uses spl_autoload() as fallback

Marcus Borger Introduction to Object-oriented programming with PHP 54

QOFEMN SOURCE
CONVENTION

Marcus Borger

Exceptions

Introduction to Object-oriented programming with PHP

55

Exceptions

CONVENTION

Respect these rules
1. Exceptions are exceptions
2. Never use exceptions for control flow
3. Never ever use exceptions for parameter passing

<?php
try {
// your code
throw new Exception(); —

}

catch |(Exception $e) { «—
//) exception handling

}

?>

Marcus Borger Introduction to Object-oriented programming with PHP

OPEMN SQOURCE
CONVENTION

Exception specialization

Exceptions should be specialized
Exceptions should inherit built in class exception

class YourException extends Exception {

}

try {
// your code

throw new YourException();—
}
catchl (YourException $e) {+«——
//f exception handling |
- s
catchh (Exception $€) { «----—--___.
/4 exception handling

v

Marcus Borger Introduction to Object-oriented programming with PHP

57

ey Exception specialization

CONVEMNTICON

Exception blocks can be nested
Exceptions can be re thrown

class YourException extends Exception { }

try {
try {
// your code
throw new YourException(); —
—

catch (YourException $e) { «
// exception handling ;
throw $e; :

}
ciirh (Exception $e) { € mmm e]

// exception handling
+

catchh (YourException $e) { «——
/ exception handling

—>

<4 - ===

Marcus Borger Introduction to Object-oriented programming with PHP

OFEN SQURCE
CONVEMNTICON

Practial use of exceptions

Constructor failure
Converting errors/warnings to exceptions
Simplify error handling

Provide additional error information by tagging

Marcus Borger Introduction to Object-oriented programming with PHP

59

Constructor failure

CONVEMNTICON

In PHP 4.4 you would simply unset($this)
Provide a param that receives the error condition

<?php
class Object
{
function __ construct(|&$Failure)
{
$failure = true;
+

}

$error = false;

$o0 = new Object(S$error);

iIf (I$error) {
// error handling, NOTE: the object was constructed
unset($0);

}

72>
Marcus Borger Introduction to Object-oriented programming with PHP 60

OPEN SOURCE
CONVENTION

Constructor failure

In 5 constructors do not return the created object
Exceptions allow to handle failed constructors

<?php
class Object

{

function __ construct()

{

+
+
try {

$o0 = new Object;
+

catch (Exception $e) {
echo "Object could not be iInstantiated\n";

throw new Exception;

}

7>

Marcus Borger Introduction to Object-oriented programming with PHP 61

e Convert Errors to Exceptions

CONVEMNTICON

Implementing PHP 5.1 class ErrorException

<?php
IT (Iclass_exists(" ErrorkException®, false)) {
class ErrorException extends Exception
{
protected $severity;
function __construct($msg,$code,$errno,$file,$line)
{
parent::_ construct($msg, $code);
$this->severity = $errno;
$this->File = $file;
$this->line = $line;
+
function getSeverity() {
return $this->severity;

Marcus Borger Introduction to Object-oriented programming with PHP 62

s Convert Errors to Exceptions

CONVENTION

Implementing the error handler

<?php

function ErrorsToExceptions($errno, $msg, $file, $line)

1
}

throw new ErrorException($msg, 0, $errno,$file,$line);

set_error_handler("ErrorsToExceptions”);

?>

Marcus Borger Introduction to Object-oriented programming with PHP 63

== Simplify error handling

CONVENTION

Typical database access code contains lots of if's

<html><body>
<?php
$ok = false;
$db = new PDO("CONNECTION™);
1T ($db) {
$res = $db->query("SELECT data®);
1T ($res) {
$res2 = $db->query("SELECT other®);
iIT ($res2) {
// handle data
$ok = true; // only if all went ok

}
}
1

IT (1$0k) echo "<hl>Service currently unabvailable</h1>";
?>

</body></html>

Marcus Borger Introduction to Object-oriented programming with PHP 64

== Simplify error handling

CONVEMNTICON

Trade code simplicity with a new complexity

<html><body>
<?php
try {
$db = new PDO("CONNECTION®);
$db->setAttribute(PDO: :ATTR_ERRMODE,
PDO: :ERRMODE_EXCEPTION) ;
$res = $db->query("SELECT data®);
$res2 = $db->query("SELECT other®);
// handle data
ks
catch (Exception $e) {
echo "<hl>Service currently unabvailable</hl1>";
error_log($e->getMessage());

}

?>
</body></html>

Marcus Borger Introduction to Object-oriented programming with PHP

SPL Exceptions

CONVENTION

SPL provides a standard set of exceptions
Class Exception must be the root of all exceptions

Exception
i
LngicEplceptiDn HuntimeElxceptiun
BadFunctionCallE<ception CutofBoundsException
DomairException CveflowException
Inwalid& rgumentException RangeExceftion
LengthException UnderflowE<caption
CutofRargeException Unexpectedyvalue==<ception

Marcus Borger Introduction to Object-oriented programming with PHP 66

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

General distinguishing

LogicException
= Anything that could have been detected at
compile time, during application design

or by the good old technology:
"look precisely"

RuntimeException

= Anything that is unexpected during runtime

=» Base Exception for all database extensions

Marcus Borger Introduction to Object-oriented programming with PHP 67

LogicException

CONVENTION
Exception
LogicE<ception
Function not found or similar - BadFunctionCallException
BadMethodCal IException
Value not in allowed domain — DomainException
Argument not valid - Invalid&rgume mtException
Length exceeded | LengthException
Some index Is out of range — OutOfRangeException

Marcus Borger Introduction to Object-oriented programming with PHP 68

OFEN SQURCE
CONVEMNTICON

Marcus Borger

RunTimeEXxception

Exception

RuntimeException

An actual value iIs out of bounds — OutOfBoundsException

Buffer or other overflow situation L OverflowException

Value outside expected range — RangeException

Buffer or other underflow situation | UnderflowException

Any other unexpected values — UnexpectedyalueException

Introduction to Object-oriented programming with PHP

69

Overloading __ call

CONVENTION

If using __ call, ensure only valid calls are made

abstract class MylteratorWrapper implements lterator

{

function _ construct(lterator $it)

{ -

$this->it = $it; Run-Time:
1 L
function __ call($func, $args) data Is dlffere_nt for
{ every execution

$callee = array($this->it, $func);

iIT (is _callable($callee)) {

throw new BadMethodCallException();

}

return call _user_ func_array($callee, $args);
¥

Marcus Borger Introduction to Object-oriented programming with PHP

Interfaces and call

CONVENTION

Interface functions cannot be handled by call

Either mark the class abstract...
abstract class MylteratorWrapper implements lterator

{
function _ construct(lterator $it) Interface lIterator {
{ function rewind();
$this->it = $it: function valid();
3} function current();
function _ call($func, $args) function key();
{ L function next();
$callee = array($this->it, $func); 1
iIT (is _callable($callee)) {
throw new BadMethodCallException();
}
return call _user_ func_array($callee, $args);
¥
}

Marcus Borger Introduction to Object-oriented programming with PHP

Interfaces and call

CONVENTION

Interface functions cannot be handled by call

...or provide the functions (here as proxy/forward)
class MylteratorWrapper implements lterator

{
function _ construct(lterator $it) Interface lIterator {
{ function rewind();
$this->it = $it; function valid();
1 function current();
function _ call($func, $args) function key();
{ L function next();
$callee = array($this->it, $func); 1
iIT (is _callable($callee)) {
throw new BadMethodCallException();
}
return call _user_ func_array($callee, $args);
¥

function rewind() { $this->i1t->rewind(); }
function valid(Q { return $this->it->valid(Q); }
function current() { return $this->it->current(); }
function key() { return $this->it->key(); }
function next() { $this->i1t->next(); }

Marcus Borger Introduction to Object-oriented programming with PHP 72

=¥ Expecting formatted data

CONVENTION

Opening a file for reading Run-Time:

File might not be
$fo = new SplFileObject($file) ;/ accessible or exist

$fo->setFlags(SplFileObject: :DROP_NEWLINE) ;
$data = array();

Marcus Borger Introduction to Object-oriented programming with PHP

=¥ Expecting formatted data

CONVEMNTICON

Reading a formatted file line by line Run-Time:

File might not be
$fo = new SpIFiIeObject($fiIe);k””////eumesgbkeoreﬂst

$fo->setFlags(SplFileObject: :DROP_NEWLINE) ;
$data = array();
foreach($fo as $1) {

it (/*** CHECK DATA ***/) {

throw new Exception(); Run-Time:
} \

$data[] = $I; data is different for
1 every execution
Ipreg_match($regex, $1) UnexpectValueException
count($l=split(",", $1)) 1= 3 RangeException
count($data) > 100 OverflowException

Marcus Borger Introduction to Object-oriented programming with PHP

=¥ Expecting formatted data

CONVENTION

Cehcking data after pre-processing Run-Time:

Filemight not be
$fo = new SpIFiIeObject($fiIe);k””////exmesgbkeoreﬂst

$fo->setFlags(SplFileObject: :DROP_NEWLINE) ;
$data = array();
foreach($fo as $1) {
iIT (Ipreg _match(*/\d,\d/", $1)) {
throw new UnexpectedValkdeException{); Run-Time:

}

$data[] = $I; data is different for

every execution

}

// Checks after the file was read entirely
iIT (count($data) < 10) throw new UnderflowException();
iIT (count($data) > 99) throw new OverflowException();

iIT (count($data) < 10 || count($data) > 99)
throw new OutOfBoundsException();

Marcus Borger Introduction to Object-oriented programming with PHP 75

=¥ Expecting formatted data

CONVENTION

Processing pre-checked data Run-Time:

Filemight not be
$fo = new SpIFiIeObject($fiIe);k””////eumesgbkeoreﬂst

$fo->setFlags(SplFileObject: :DROP_NEWLINE) ;
$data = array();
foreach($fo as $1) {

iIT (Ipreg _match(*/\d,\d/", $1)) {

throw new UnexpectedValkdeException{); Run-Time:

}

$data[] = $I; data is different for

1 every execution

iIT (count($data) < 10) throw new UnderflowException();
// maybe more precessing code

foreach($data as &$v) { Compile-Time:

iIf (count($v) == 2) { / exception signales

throw new DomainException(); failed precondition
}

$v = $v[0] * $Vv[1i];

Marcus Borger Introduction to Object-oriented programming with PHP

76

QOFEMN SOURCE
CONVENTION

Marcus Borger

Reflection

Introduction to Object-oriented programming with PHP

77

Reflection API

CONVEMNTICON

Can reflect nearly all aspects of your PHP code
M Functions
M Classes, Methods, Properties
M Extensions

class Foo {
public $prop;
function Func($name) {
echo "Hello $name';
+

}

ReflectionClass: export("Foo");
ReflectionObject: :export(new Foo);
ReflectionMethod: :export(“Foo", "func®);
ReflectionProperty: export(“"Foo", "prop”);
ReflectionExtension: jexport(“standard®);

Marcus Borger Introduction to Object-oriented programming with PHP

CONVEMNTICON

== Dynamic object creation

Reflection allows dynamic object creation

class Test {
function __ construct($x, $y = NULL) {
$this->x = $x;
$this->y = Py;
+

+
function new_object array($cls, $args = NULL) {

return call _user_ func _array(
array(new ReflectionClass($cls), "newlnstance®),
$args);
by

new_object array("stdClass”);
new _object array("Test”, array(l));
new object array(“Test®, array(l, 2));

Marcus Borger Introduction to Object-oriented programming with PHP 79

QOFEMN SOURCE
CONVENTION

Marcus Borger

Bullt-in Interfaces

Introduction to Object-oriented programming with PHP

80

O'REILLY"

OSCON Bullt-in Interfaces

CONVENTION

M | PHP 5 contains built-in interfaces that allow you to
change the way the engine treats objects.

M ArrayAccess

M lterator

M lteratorAggregate

M | Built-in extension SPL provides more Interfaces
and Classes

M ArrayObject, Arraylterator

M Filterlterator

M Recursivelterator

M Use CLI:
php --re SPL
php --rc ArrayAccess

Marcus Borger Introduction to Object-oriented programming with PHP 81

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

ArrayAccess

Allows for creating objects that can be
transparently accessed by array syntax.

When combined with the iterator interface, it
allows for creating ‘arrays with special properties’.

interface ArrayAccess {

// Q@return whether $offset i1s valid (true/false)
function offsetExists($offset);

// Q@return the value associated with $offset
function offsetCGet($offset);

// associate $value with $offset (store the data)
function offsetSet($offset, $value);

// unset the data associated with $offset
function offsetUnset($offset);

Marcus Borger Introduction to Object-oriented programming with PHP 82

ArrayAccess

CONVENTION

ArrayAccess does not allow references
(the following is an error)

class MyArray/extends ArrayAccefz/{

function &offsetCet($offset) § 7* ... */ }
function offsetSet($offset, &$value) { /7* ... */ }
function offsetExists($offset) { /7* ... */ }
function offsetUnset($offset) { /7* ... */ }

Marcus Borger Introduction to Object-oriented programming with PHP

ArrayAccess Example

We want to create variables which can be shared
between processes.

We will set up interception so that access attempts

on the variable are actually performed through a
DBM file.

Marcus Borger Introduction to Object-oriented programming with PHP 84

= Binding Access to a DBM

CONVEMNTICON

<?php
class DbaReader implements ArrayAccess {
protected $db = NULL;
function ___construct($file, $handler) {
1T (1$this->db = dba_open($file, “cd”, $handler))
throw new exception(“Could not open fille = . $Ffile);
>

function _ destruct() { dba close($this->db); }
function offsetExists($offset) {
return dba_exists($offset, $this->db);
+
function offsetGet($offset) {
return dba_fetch($offset, $this->db);
+
function offsetSet($offset, $value) {
return dba_replace($offset, $value, $this->db);
+
function offsetUnset($offset) {
return dba_delete($offset, $this->db);

Marcus Borger Introduction to Object-oriented programming with PHP

85

A Trivial Example

CONVENTION

<?php
IT (Iclass_exists("DbaReader®, false)) {
require_once “dbadeader.inc’;
+
$ SHARED = new DbaReader(*/tmp/.counter®, "“flatfile");
$ SHARED[“"counter®] += 1;
printfC'PID: %d\nCOUNTER: %d\n", getmypid(),

$ SHARED["counter®]);
?>

Marcus Borger Introduction to Object-oriented programming with PHP 86

OPEN SOURCE I te ra.tO rS

CONVENTION

Normal objects behave like arrays when used with
the foreach construct

Specialized Iterator objects can be iterated
differently

<?php

class Object {
public $propl
public $prop2

“"Hello "';
“"World\n"';

}

foreach(new Object as $prop) {
echo $prop;

Marcus Borger Introduction to Object-oriented programming with PHP 87

OPEN SOURCE
CONVENTION

What are lterators

Iterators are a concept to iterate anything that
contains other things.

Iterators allow to encapsulate algorithms

Marcus Borger Introduction to Object-oriented programming with PHP

88

What are lterators

CONVEMNTICON

Iterators are a concept to iterate anything that
contains other things. Examples:

M Values and Keys in an array ArrayObject, Arraylterator

M Text lines in a file SplFileObject

M Files in a directory [Recursive]Directorylterator
M XML Elements or Attributes ext: SimpleXML, DOM

M Database query results ext: PDO, SQLite, MySQLI

M Dates in a calendar range PECL/date (?)

M Bits in an image ?

Iterators allow to encapsulate algorithms

Marcus Borger Introduction to Object-oriented programming with PHP 89

What are lterators

CONVEMNTICON

Iterators are a concept to iterate anything that
contains other things. Examples:

M Values and Keys in an array ArrayObject, Arraylterator

M Text lines in a file SplFileObject

M Files in a directory [Recursive]Directorylterator
M XML Elements or Attributes ext: SimpleXML, DOM

M Database query results ext: PDO, SQLite, MySQLi

M Dates in a calendar range PECL/date (?)

M Bits in an image ?

Iterators allow to encapsulate algorithms

M Classes and Interfaces provided by SPL:

Appendlterator, Cachinglterator, Limitlterator,
Filterlterator, Emptylterator, Infinitelterator,
NoRewindlterator, Outerlterator, Parentlterator,
Recursivelterator, Recursivelteratorlterator,
Seekablelterator, SplFileObject, . ..

Marcus Borger Introduction to Object-oriented programming with PHP 90

O'REILLY"

S Array vs. lterator

CONVENTION

M |An array in PHP $ar = array()
M can be rewound: reset($ar)
M is valid unless it's key is NULL: is null(key(%$ar))
M have current values: current($ar)
M have keys: key($ar)
M can be forwarded: next($ar)

M |Something that is traversable $it = new lterator;

M may know how to be rewound: S$it->rewind()
(does not return the element)

(may return NULL at any time)
can forward to its next element: $i1t->next()

M should know if there is a value: $it->valid()
M may have a current value: $i1t->current()
M may have a key: $it->key()

M

Marcus Borger Introduction to Object-oriented programming with PHP 91

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

The big difference

Arrays
M require memory for all elements
M allow to access any element directly

Iterators
M only know one element at a time
M only require memory for the current element
M forward access only
M Access done by method calls

Containers
M require memory for all elements
M allow to access any element directly
M can create external Iterators or are internal Iterators

Marcus Borger Introduction to Object-oriented programming with PHP

92

O'REILLY"

OSCON

A The basic concepts

| Iterators can be internal or external
also referred to as active or passive

M | An internal iterator modifies the object itself

M | An external iterator points to another object
without modifying it

M PHP always uses external iterators at engine-level

M | lterators may iterate over other iterators

Marcus Borger Introduction to Object-oriented programming with PHP 93

O'REILLY"

S0 PHP lterators

CONVENTION

M
M
M
M
M

Anything that can be iterated implements Traversable
Objects implementing Traversable can be used in foreach
User classes cannot implement Traversable

| teratorAggregate is for objects that use external iterators
I terator is for internal traversal or external iterators

O~ Traversable

O~ Iterator

O~ IteratorAggregate . 5
i rewind () : void

valid () : boolean
current () : mixed
key () : mixed
next () : void

+ getlterator () : Iterator

+ + + + +

Marcus Borger Introduction to Object-oriented programming with PHP 94

Implementing Iterators

O~ IteratorAggregate

+ getlterator () : Iterator

|
|
|
|
I
I
|
|
|
I
I
|
|

O~ Traversable

= — — — — — — —|+ valid () :boolean

G- Iterator

+ rewind () :void

+ current () : mixed

+ key () : mixed

+ next () : void
Iteratorimpl

Aggregatelmpl

+ <<Implement>> getlterator () : Iterator

<<Implement>> rewind () : void

<<Implement>> valid () :boolean
<<Implement>> current () : mixed
<<Implement>> key () : mixed
<<Implement>> next () : void

Marcus Borger Introduction to Object-oriented programming with PHP o5

How lterators work

CONVEMNTICON

Iterators can be used manually
Iterators can be used implicitly with foreach

<?php
$0 = new Arraylterator(array(l, 2, 3));
$o->rewind();
while ($o->valid(Q)) {
$key = $o->key();
$val = $o->current();
// some code
$o->next();

<?php
$0 = new Arraylterator(array(1, 2, 3));

foreach($o as $key => $val) {
// some code
+

7>

Marcus Borger Introduction to Object-oriented programming with PHP

OPEMN SQOURCE
CONVENTION

How lterators work

Internal Iterators
User lterators

<?php

interface lterator {
function rewind();
function valid();
function current();
function key();

<?php

class Filterlterator implements Iterator {
function __ construct(lterator $input)...
function rewind()...
function accept()

<Rpigion valid()...
$iurcget cesoemte));

fdreadiBikep(Pkey==>%val) {

function next(); MMrextomsndatd). ..
by ¥
?> ?>
<?php

$it = get_resource();

forg@itreewhd €y (Hit-$fadd (pakitnyr aex@kpyE=>%val) {
Hahoess SiteredidataQni$key = $it->key();

+

7>

Marcus Borger Introduction to Object-oriented programming with PHP 97

Debug Session

CONVENTION

<?php <?php
class Arraylterator { PHP 5.1 $a = array(l, 2, 3);
protected $ar; $0 = new Arraylterator($a);
function __ construc u@ $ar) { foreach($o as $key => $val) {
$this->ar = $ar; echo "$key => $va\n"';

3} s

function rewind() { ?>

rewind($this->ar);
>

fucntion valid() { 0
return 'is null(key($this->ar)); || 1 => 2
2

ks
function key() {

return key($this->ar);
s

fucntion current() {

return current($this->ar);
+

function next() {
next($this->ar);

Marcus Borger Introduction to Object-oriented programming with PHP o8

http://somabo.de/talks/200607_oscon_oop_debug_session.pps
http://somabo.de/talks/200607_oscon_oop_debug_session.pdf

O'REILLY"

OSCON

OPEN SOURCE

CONVENTION

Aren’t Iterators Pointless In
PHP?

Why not just use arrays:
foreach($some _array as $item) {/*...*/}

Aren't we making life more difficult than need be?

No! For simple aggregations the above works fine
(though it’s slow), but not everything is an array.

What about:
M Buffered result sets
M Lazy Initialization
M Directories

M Anything not already an array

Marcus Borger Introduction to Object-oriented programming with PHP 99

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

Iterators by example

Using Iterators you can efficiently grab all groups
from INI files

The building blocks:
M A class that handles INI files
M An abstract filter Iterator
M A filter that filters group names from the INI file input
M An lterator to read all entries in the INI file
M Another filter that allow to search for specific groups

Marcus Borger Introduction to Object-oriented programming with PHP 100

INI file abstraction

CONVENTION

class DbaReader implements lterator {
protected $db = NULL;
private $key = false, $val = false;

function construct($flle $handler) {
if (1$this->db = dba open($flle : $handler))
throw new Exception(‘'Coulld not open file $fi1le™);

function _ destruct() {
dba_close($this->db);

private function fetch _data($key) {
it (($this- >ke = $key) == false)
$this->val = dba fetch($this—>key, $this->db);

function rewind()
$this->fFetch_data(dba_ firstkey($this->db));

function next() {
y $this->Fetch _data(dba_ nextkey($this->db));

Tfunction current() { return $this->val;
function valid() { return $this->key == false; }
function key() { return $this->key; }

Marcus Borger Introduction to Object-oriented programming with PHP 101

&9 Filtering Iterator keys

CONVENTION

Filterlteraor is an abstract class

M Abstract accept() is called from rewind() and next()
M When accept() returns false next() will be called automatically

<?php _ _
class KeyFilter extends Filterlterator

{

private $rx;

function _ construct(lterator $it, $regex) {
parent:: construct($it);
$this->rx = $regex;

function accept() {
return ereg($this->rx,$this->getlnnerlterator()->key());

bs
function getRegex() {
return $this->rx;

+
protected function _ clone($that) {
// disallow clone

Marcus Borger Introduction to Object-oriented programming with PHP 102

@ Getting only INI groups

CONVENTION

<?php

IT (Iclass_exists("KeyFilter®, false)) {
require_once("keyfilter.inc");

¥

class IniGroups extends KeyFilter {
function _ construct($file) {
parent::_construct(
new DbaReader($file, " inifile™), " "\[.*\]$");
by

function current() {
return substr(parent::key(), 1, -1);

+
function key() {

return substr(parent::key(), 1, -1);

Marcus Borger Introduction to Object-oriented programming with PHP 103

Putting it to work

CONVENTION

Avoid calling

__autoload()

IT (Iclass_exists("KeyFilter®, false)) {
require_once("keyfilter.inc");

<?php

iIf (Iclass_ eX|sts(IniGroups®, false)) {
) require_once("iInigroups. inc ")

$it = new IniGroups($argv[1l]);

it ($argc>2) {
) $it = new KeyFilter($it, $argv[2]):

foreach($it as $group) {
echo $group . "\n";

Marcus Borger Introduction to Object-oriented programming with PHP 104

Conclusion so far

CONVENTION

Iterators require a new way of programming

Iterators allow to implement algorithms
abstracted from data

Iterators promote code reuse

Some things are already in SPL
M Filtering
M Handling recursion
M Limiting

Marcus Borger Introduction to Object-oriented programming with PHP 105

== | et’s Talk About Patterns

CONVEMNTICON

Patterns catalog solutions to problem categories

They consist of
M A name
M A description of their problem
M A description of the solution

M An assessment of the pros and cons of the pattern

Marcus Borger Introduction to Object-oriented programming with PHP 106

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

N N

What do patterns have to

Not so much.

do with OOP?

Patterns sources outside OOP include:

Architecture (the originator of the paradigm)
User Interface Design (wizards, cookie crumbs,

tabs)

Cooking (braising, pickling)

Marcus Borger

Introduction to Object-oriented programming with PHP 107

=& Patterns We’ve Seen So Far

CONVENTION

Singleton Pattern

Iterator Pattern

Factory Pattern

Marcus Borger Introduction to Object-oriented programming with PHP 108

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

Aggregator Pattern

Problem: You have collections of items that you
operate on frequently with lots of repeated code.

Remember our calendars:

foreach($entries as $entry) {
echo $entry;

¥

Solution: Create a container that implements the
same interface, and perfoms the iteration for you.

Marcus Borger Introduction to Object-oriented programming with PHP 109

O'REILLY"

OSCON

OPEN SQURCE

CONVENTION

Aggregator Pattern

class EntryAggregate extends Entry {
protected %$entries;

public function display() {
foreach($this->entries as $entry) {
$entry->display();
}

public function add(Entry $e) {
array_ push($this->entries, $%$e);
by

}

By extending Entry, the aggregate can actually
stand In any place that entry did, and can itself

\ contain other aggregated collections.

Marcus Borger Introduction to Object-oriented programming with PHP 110

O'REILLY"

OSCON

OPEN SOURCE
CONVENTION

Proxy Pattern

Problem: You need to provide access to an
object, but it has an interface you don’t know at
compile time.

Solution: Use accessor/method overloading to
dynamically dispatch methods to the object.

Discussion: This is very typical of RPC-type
facilities like SOAP where you can interface with
the service by reading in a definitions file of some
sort at runtime.

Marcus Borger Introduction to Object-oriented programming with PHP 111

HSCON Proxy Pattern in PEAR
CONVENTION S O A P

class SOAP _Client {

public $wsdl;

public function __ construct($endpoint) {
$this->wsdl = WSDLManager: :get($endpoint);

+

public function _ call($method, $args) {
$port = $this->wsdl->getPortForOperation($method);
$this->endpoint=$this->wsdl->getPortEndpoint($port);
$request = SOAP_Envelope: :request($this->wsdl) ;
$request->addMethod($method, $args);
$data = $request->savexXML();
return SOAP_Envelope: :parse($this->endpoint,$data) ;

Marcus Borger Introduction to Object-oriented programming with PHP 112

O'REILLY"

OSCON

OPEN SOURCE

CONVENTION

Observer Pattern

Problem: You want an object to automatically
notify dependents when it is updated.

Solution: Allow 'observer’ to register themselves
with the observable object.

Discussion: An object may not apriori know who
might be interested in it. The Observer pattern
allows objects to register their interest and supply
a notification method.

Marcus Borger Introduction to Object-oriented programming with PHP 113

O'REILLY"

OSCON

OPEN SQURCE
CONVENTION

Object handling side notes

You cannot access the object identifier/handle
$observers|[] = $observer;

YOU need to prevent double insertion/execution

foreach($observers as $0) {
iIT ($0 === $observer) return;
+

$observers[] = $observer;

No easy way to delete an object from an array
foreach($observers as $k => $0) {

1T ($0 === $observer) {
unset($observer[$k]);
break;

+

}

Marcus Borger Introduction to Object-oriented programming with PHP 114

Object Storage

CONVENTION

class ObjectStorage {
protected $storage = array();

function attach($obj) {
foreach($this->storage as $0) {
iIT ($0 === $obj) return;

y %this—>storage[] = $obj;

function detatch($obj) {
foreach($this->storage as $k => $0) {
It ($o0 === $obj) {
unset($this->storage[$k]);
return;

Marcus Borger Introduction to Object-oriented programming with PHP

115

=¥ Object Storage in 5.2

CONVENTION

class ObjectStorage {
protected $storage = array();

function attach($obj) {
$this->storage[spl _object _hash($obj)] = $obj;
¥

function detatch($obj) {
unset($this->storage[spl _object hash($obj)]);

}
}

Or simply use SplObjectStorage

Marcus Borger Introduction to Object-oriented programming with PHP 116

Observer Pattern
Implementation

class MySubject implements Subject {
protected $observers;
public function _ construct() {
$this->observer = new ObjectStorage;

public function attach(Observer $0) {
$this->observers->attach($o);

public Ffunction detach(Observer $0) {
$this->observers->detach($o);

public function notify() {
foreach($this->observers as $0) $o->update($this);

class MyObserver implements Observer {
public function update(Subject $s) {
y // do logging or some other action

}

Concrete Examples: logging facilities: emaill,
debugging, SOAP message notifications.

Marcus Borger Introduction to Object-oriented programming with PHP 117

Reference

CONVENTION

Everythining about PHP
http://php.net

These slides
http://talks.somabo.de

SPL Documentaion & Examples
http://php.net/—helly/php/ext/spl
http://cvs.php.net/php-src/ext/spl/examples
http://cvs.php.net/php-src/ext/spl/internal

George Schlossnagle
Advanced PHP Programming

Andi Gutmans, Stig Bakken, Derick Rethans
PHP 5 Power Programming

Marcus Borger Introduction to Object-oriented programming with PHP 118

http://php.net/
http://talks.somabo.de/
http://talks.somabo.de/
http://php.net/~helly/php/ext/spl
http://php.net/~helly/php/ext/spl
http://cvs.php.net/php-src/ext/spl/examples
http://cvs.php.net/php-src/ext/spl/examples
http://cvs.php.net/php-src/ext/spl/internal
http://cvs.php.net/php-src/ext/spl/internal
http://www.amazon.com/exec/obidos/tg/detail/-/0672325616
http://www.amazon.de/exec/obidos/ASIN/013147149X

	Introduction to Object-orientedprogramming with PHP
	Overview
	
	What does OOP aim to achieve?
	What are the features of OOP?
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation
	Encapsulation: Are Objects Just Dictionaries?
	Data Hiding
	Inheritance
	The Problem of Code Duplication
	The Problem of Code Duplication
	The Problem of Code Duplication
	Polymorphism?
	Simplicity through Polymorphism
	Simplicity through Magic?
	Polymorphism the other way round
	Another example
	Some Inheritance
	Inheritance+Polymorphism
	A little abstraction
	A little abstraction
	
	PHP 4 and OOP ?
	ZE2's revamped object model
	Revamped Object Model
	
	Objects referenced by identifiers
	Constructors and Destructors
	Constructors and Destructors
	Default property values
	Static members
	Pseudo constants
	Visibility
	Constructor visibility
	The Singleton pattern
	Constants
	Abstract members
	Final members
	Different Object same behavior
	Interfaces
	Property kinds
	Object to String conversion
	Interceptors
	Typehinting
	Class Design
	To Strict or to Weak?
	
	Dynamic class loading
	__autoload & require_once
	SPL's class loading
	SPL's class loading
	
	Exceptions
	Exception specialization
	Exception specialization
	Practial use of exceptions
	Constructor failure
	Constructor failure
	Convert Errors to Exceptions
	Convert Errors to Exceptions
	Simplify error handling
	Simplify error handling
	SPL Exceptions
	General distinguishing
	LogicException
	RunTimeException
	Overloading __call
	Interfaces and __call
	Interfaces and __call
	Expecting formatted data
	Expecting formatted data
	Expecting formatted data
	Expecting formatted data
	
	Reflection API
	Dynamic object creation
	
	Built-in Interfaces
	ArrayAccess
	ArrayAccess
	ArrayAccess Example
	Binding Access to a DBM
	A Trivial Example
	Iterators
	What are Iterators
	What are Iterators
	What are Iterators
	Array vs. Iterator
	The big difference
	The basic concepts
	PHP Iterators
	Implementing Iterators
	How Iterators work
	How Iterators work
	Debug Session
	Aren’t Iterators Pointless in PHP?
	Iterators by example
	INI file abstraction
	Filtering Iterator keys
	Getting only INI groups
	Putting it to work
	Conclusion so far
	Let’s Talk About Patterns
	What do patterns have to do with OOP?
	Patterns We’ve Seen So Far
	Aggregator Pattern
	Aggregator Pattern
	Proxy Pattern
	Proxy Pattern in PEAR SOAP
	Observer Pattern
	Object handling side notes
	Object Storage
	Object Storage in 5.2
	Observer Pattern Implementation
	Reference

