

http://talks.somabo.de/200903c.pdf

PHR/
— Topics
Security

Overdesign

Spagetthi code

DIY — Do It Yourself

Utilize available Tools

Micro Optimizations
References

Do everything with Objects
Include vs. Require vs _once
Provide a Style Guide

Use with Caution

Borger, Schltter Worst PHP Practice

W

PHR

Security

Adress security once the application is ready
No hacker will ever care for my application
| do not have security issues

Since hackers automaticaly scan, they will find you

Take care of security right from the beginning

J Security should and will influence:
J Your overall design
J Your development and deployment process

Borger, Schltter Worst PHP Practice 3

Borger, Schltter Worst PHP Practice

W

PHR

Overdesign

Always plan for everything

Limit yourself to what you and your customer want
Do not fear restarting development

The more complex your design gets:
J The more complex your code gets
J The more bugs you have
J The more the development will cost
J The more likely you are to miserably fail

PHP is not: Java, C++, Python, Ruby on Rails

Borger, Schltter Worst PHP Practice 5

W

PHR....

Spaghetti code

This code just needs a little bit more tweaking
Modularize / Componentize your code

Every day code can put in base repository
Not everything you use twice belongs there

Borger, Schltter Worst PHP Practice

W

PHR....

DIY — Do It Yourself

Implementing everything yourself
M Waste of time
MDevelopment
MTesting
M Documenting
M Maintenance

M Creating unnecessary bugs

Prefer NIH

J Existing code should be
J Well developed
J Tested
J Documented
J Maintained
J Have very few bugs if at all
Borger, Schltter Worst PHP Practice

onférence

PHBU;ﬁj

Utilize available Tools

M | Designing, Testing, Versioning, Documenting . . .

. That all takes far too much time!

Software design lets you capture errors early
Testing obviously lets you find bugs

Versioning helps you track down issues
Documenting helps everyone understand the code

J Familiarize yourself with available tools

J Design: UML might be overkill, but . . .

J Testing: Run-tests, SimpleTest, PHPUnNiIt, . . .
J Versioning: SVN, HG, GIT

~ Borger, Schliter Worst PHP Practice 8

W

PHR....

Micro Optimizations

Always write optimized code

Optimized code usually is harder to maintain
Harder to maintain code is often more error prone
Writing optimized code takes longer

Follow the 80 : 20 rule
J 80% of the time is spent in 20% code
J Optimizing the 80% by 20% gains: 4%
J Optimizing the 20% by 10% gains: 8%

J Use Profiling — System Profiling

Borger, Schltter Worst PHP Practice 9

References

Using references to optimize code

References don’t do what you think they do
Do not use references (avoid them like holy water)

Borger, Schltter Worst PHP Practice 10

References

function ConfigFramework(ARRAY $config) {
// .
+

$config = array(...);

ConfigFramework($config);

class Application {
function _ construct($config) {
$this->config = $config;

}
}

$app = new Application($config);

Borger, Schltter Worst PHP Practice

11

References

function ConfigFramework(ARRAY $config) {
// Expensive read function
+

$config = array(...);

ConfigFramework($config);
// This configure stuff 1s somehow slow

class Application {
function _ construct($config) {
$this->config = $config;

}
}

$app = new Application($config);

Borger, Schltter Worst PHP Practice

12

References

function ConfigFramework(ARRAY &$config) {
// Expensive read function
+

$config = array(...);

ConfigFramework($config);
// Should be faster now, no?

class Application {
function _ construct($config) {
$this->config = $config;

}
}

$app = new Application($config);

Borger, Schltter Worst PHP Practice

13

References

function ConfigFramework(ARRAY &$config) {
// Expensive read function

}

$config = array(...);

ConfigFramework($config);
// Now $config i1s a reference

class Application {
function _ construct($config) {
$this->config = $config;

}
}

// And now the following i1s slow
$app = new Application($config);

Borger, Schltter Worst PHP Practice

14

Borger, Schltter

Worst PHP Practice

15

In PHP all values are zval's

typedef struct _zval struct {
zvalue value value;

zend_uint refcount;

—zend_uchar type;
zend _uchar is_ref;
} zvAl;
typedef union _zvalue value {
» long Ival;
v » double dval;
IS NULL struct {
IS LONG char *val;
IS DOUBLE int len;
IS BOOL } str;
IS ARRAY » HashTable *ht;
IS OBJECT , zend_object_value obj;
IS:STRING } zvalue_value;
IS RESOURCE

Borger, Schltter

Worst PHP Practice

16

In PHP all values are zval's

typedef struct _zval_struct {
zvalue value value;

— zend_uint refcount;
zend_uchar type;

zend _uchar is_ref;

} zvAl;

A 4

Userspace notion of "Reference"

0 == Not a reference

== |s a reference

How many "labels" are
associated with this zval?

Borger, Schltter

Worst PHP Practice

17

$a = 123;

Copy On Write

typedef struct _zval_struct {
zvalue value value;
zend_uint refcount;
zend_uchar type;

» Has a value of O (zero)
» zval shared by 1 or more labels

* |If one label wants to make a

zend _uchar is_ref;
} zval,

»change, it must leave other
labels with the original value.

(82

value.lval = 123
refcount =1
type = IS _LONG

is ref=0

Borger, Schltter

Worst PHP Practice

18

$a =123;
$b = $a;

Copy On Write

typedef struct _zval_struct {
zvalue value value;
zend_uint refcount;
zend_uchar type;

» Has a value of O (zero)
» zval shared by 1 or more labels

* |If one label wants to make a

zend _uchar is_ref;
} zval,

»change, it must leave other
labels with the original value.

M)

value.lval = 123
refcount = 2
type = IS _LONG

is ref=0

Borger, Schltter

Worst PHP Practice

19

PHR.S

Copy On Write

typedef struct _zval struct { » Has a value of O (zero)
zvalue value value;

; _ » zval shared by 1 or more labels
zend_uint refcount;

zend_uchar type; « If one label wants to make a
zend_uchar is_ref; »change, it must leave other
} zval, labels with the original value.

$a = 123; @ @

$b = $a;

value.lval = 123 value.lval = 456

$b = 456; refcount = 1 refcount = 1
type = IS _LONG type = IS _LONG
is ref=0 is ref=0

Borger, Schltter Worst PHP Practice

$a = 123;

Full

Reference

typedef struct _zval_struct {
zvalue value value;
zend_uint refcount;
zend_uchar type;

* Has a value of 1 (one)
» zval shared by 1 or more labels

* |If one label wants to make a

zend _uchar is_ref;
} zval,

»change, it does so, causing other
labels to see the new value.

(82

value.lval = 123
refcount =1
type = IS _LONG

is ref=0

Borger, Schltter

Worst PHP Practice

21

$a =123;
$b = &%a;

Full

Reference

typedef struct _zval_struct {
zvalue value value;
zend_uint refcount;
zend_uchar type;

* Has a value of 1 (one)
» zval shared by 1 or more labels

* |If one label wants to make a

zend _uchar is_ref;
} zval,

»change, it does so, causing other
labels to see the new value.

M)

value.lval = 123
refcount = 2
type = IS _LONG

s ref=1

Borger, Schltter

Worst PHP Practice

22

$a =123;
$b = &%a;
$b = 456;

Full

Reference

typedef struct _zval_struct {
zvalue value value;
zend_uint refcount;
zend_uchar type;

* Has a value of 1 (one)
» zval shared by 1 or more labels

* |If one label wants to make a

zend _uchar is_ref;
} zval,

»change, it does so, causing other
labels to see the new value.

M)

value.lval = 456
refcount = 2
type = IS _LONG

s ref=1

Borger, Schltter

Worst PHP Practice

23

Do everything with Objects

Everything must be an object
PHP supports procedural code

When you use a singleton factory
J You could have used globals

An object that simply stores values
J Could simply be an array

Borger, Schltter Worst PHP Practice 24

Include vs. Require vs once

require_once is the safe and correct way - always
There are four verisons for a reason

Include

require

Include once / require_once

fpassthru()

eval

Borger, Schltter Worst PHP Practice

25

Conférence' —

G G G G G GO G GV GV G &

PH’BU;ﬁj

Provide a Style Guide

Provide actual coding rules (coding style)
Provide useful error handling

Always develop with E_STRICT + E_NOTICE on
Use your logs

Use .inc for includes + care for server config

Use * instead of “

Do not constantly switch between HTML and PHP
Do not use auto_prepend file, auto _append file
Do not leave debugging in production

Do we really need to mention register_ globals?
No Magic quotes - But Filter input & escape output

Borger, Schliter Worst PHP Practice 27

Use with Caution

$ REQUEST

___get, set, isset, unset
___call, callStatic

___autoload

@

<?=

Borger, Schltter Worst PHP Practice

28

Reference

Everythining about PHP
http://php.net

These slides
http://talks.somabo.de

George Schlossnagle
Advanced PHP Programming

Andi Gutmans, Stig Bakken, Derick Rethans
PHP 5 Power Programming

Borger, Schltter Worst PHP Practice

29

http://php.net
http://talks.somabo.de

